Tin tức
Hotline: (84 04) 382 49874      
Hỗ trợ online: Chát với hỗ trợ Online - Yahoo Chát với hỗ trợ Online - Skype  Liên Hệ  Tiếng Anh
http://techmartvietnam.vn/Portals/_default/Skins/NVPortal/Images/xuctien.jpg
http://techmartvietnam.vn/Portals/_default/Skins/NVPortal/Images/xuctien.jpg

Làm lạnh bằng vật chất lạnh nhất thế giới 12:12 PM,12/16/2014

Các nhà vật lý tại Đại học Basel đã phát triển một kỹ thuật làm mát mới cho các hệ thống cơ học lượng tử. Sử dụng một loại khí hơi nguyên tử siêu lạnh, dao động của một tấm màng đã được làm lạnh xuống thấp hơn một độ trên không độ tuyệt đối. Kỹ thuật này có thể tạo khả năng cho các nghiên cứu mới về vật lý lượng tử và phát minh ra các thiết bị đo lường chính xác, theo công trình nghiên cứu được công bố trên Tạp chí Nature Nanotechnology.

Hơi nguyên tử siêu lạnh thuộc loại vật chất lạnh nhất đang tồn tại. Có thể sử dụng các chùm tia laser để bẫy các nguyên tử bên trong một buồng chân không và làm chậm sự chuyển động của chúng xuống đến mức độ rất chậm để đạt được nhiệt độ thấp hơn một phần triệu của một độ trên không độ tuyệt đối, là nhiệt độ mà tại đó tất cả các chuyển động đều dừng lại. Ở nhiệt độ thấp như vậy, các nguyên tử tuân theo các quy luật vật lý lượng tử: chúng di chuyển giống như các gói sóng (wave packet) nhỏ và có thể tồn tại ở những trạng thái siêu vị trí (superposition) tại nhiều nơi cùng một lúc. Các tính năng này đã được khai thác trong các công nghệ như đồng hồ nguyên tử và các thiết bị đo lường chính xác.

 Việc sử dụng thành công loại khí hơi cực lạnh này như chất làm lạnh để hạ nhiệt độ của các vật thể xuống nhiệt độ rất thấp sẽ mở ra nhiều khả năng cho nghiên cứu vật lý lượng tử trong các hệ thống mới và có tiềm năng lớn. Vấn đề nảy sinh ở chỗ các nguyên tử có kích thước cực nhỏ ở mức tế vi và thậm chí cả những đám mây nguyên tử lớn nhất được tạo ra, trong đó chứa vài tỷ nguyên tử siêu lạnh cũng vẫn chứa được ít các hạt hơn rất nhiều so với một vật thể chỉ nhỏ như một hạt cát. Kết quả là, khả năng làm mát của các nguyên tử này bị hạn chế.

Một nhóm các nhà nghiên cứu thuộc trường Đại học Basel do giáo sư Philipp Treutlein dẫn đầu giờ đây đã thành công trong việc sử dụng các nguyên tử siêu lạnh để làm mát các dao động của một tấm màng kích cỡ milimet. Tấm màng bằng silic nitrua này có độ dày 50 nm, dao động lên xuống như một mặt trống nhỏ hình vuông. Các dao động cơ như vậy không bao giờ tắt hoàn toàn, bởi dao động nhiệt phụ thuộc vào nhiệt độ của vật thể. Mặc dù tấm màng chứa số lượng các hạt nhiều hơn đến một tỷ lần so với đám mây nguyên tử, nhưng đã quan sát thấy một hiệu ứng làm mát mạnh, hạ thấp nhiệt độ dao động màng xuống đến dưới 1 độ trên không độ tuyệt đối.

"Bí quyết ở đây là tập trung toàn bộ khả năng làm mát của các nguyên tử vào chế độ rung của màng", theo Tiến sĩ Andreas Jöckel, một thành viên của nhóm dự án giải thích. Sự tương tác giữa các nguyên tử và tấm màng được tạo ra thông qua một chùm tia laser. Tia sáng laser tác động lực lên tấm màng và các nguyên tử. Dao động của tấm màng làm thay đổi lực tia sáng tác động lên các nguyên tử và ngược lại. Tia laser có thể truyền hiệu ứng làm lạnh qua khoảng cách vài mét, vì vậy mà đám mây nguyên tử không nhất thiết phải tiếp xúc trực tiếp với tấm màng. Sự kết cặp này được khuếch đại bằng một cộng hưởng quang gồm hai gương, với tấm màng được đặt xen vào giữa.

Trên lý thuyết, các hệ thống sử dụng ánh sáng để kết cặp các nguyên tử siêu lạnh với các bộ dao động cơ đã được đề xuất. Và thí nghiệm tại Đại học Basel là công trình được thực hiện thực hiện lần đầu tiên trên thế giới đã hiện thực hóa một hệ thống như vậy và dùng nó để làm lạnh bộ dao động. Các cải tiến kỹ thuật tiếp theo sẽ có khả năng làm lạnh dao động màng xuống đến trạng thái cơ học lượng tử cơ bản.

Đối với các nhà nghiên cứu, việc làm lạnh tấm màng bằng nguyên tử siêu lạnh chỉ là bước đầu tiên, tính chất lượng tử dễ kiểm soát của các nguyên tử kết hợp với tương tác nhờ ánh sáng đang mở ra những khả năng mới về kiểm soát lượng tử. Điều này có thể cho phép tiến hành các thí nghiệm vật lý lượng tử cơ bản bằng một hệ thống cơ học kích thước tương đối lớn ở cấp độ vĩ mô, có thể nhìn thấy bằng mắt thường. Nó cũng có thể giúp tạo ra những trạng thái tương tác giữa các nguyên tử và màng. Điều đó sẽ cho phép đo được những dao động màng với độ chính xác chưa từng có, và dẫn đến phát triển các loại cảm biến mới để đo lực và trọng lượng rất nhỏ.

Nguồn : NASATI, 3/12/2014

Send Print  Back
The news brought
Phát triển điện hạt nhân là chiến lược dài hạn của Việt Nam 12/16/2014
Từ tháng 12/2014, giảng viên nghiên cứu khoa học được hỗ trợ gì? 12/16/2014
Đèn LED - cơ hội và thách thức tại Việt Nam 12/16/2014
Khoa học và công nghệ đồng hành với sự phát triển của ngành dược 12/16/2014
Hội thảo về Chiến lược chu trình nhiên liệu và chính sách chất thải phóng xạ 12/16/2014
Nghiệm thu đề tài cấp nhà nước: “Nghiên cứu điều chỉnh chính sách FDI ở Việt Nam đến năm 2020” 12/16/2014
Bộ Khoa học và Công nghệ chỉ đạo tăng cường phối hợp thanh tra, kiểm tra xử lý gian lận đo lường trong kinh doanh xăng dầu 12/16/2014
Hội thảo Cập nhật Kế hoạch hỗ trợ an ninh hạt nhân tích hợp 12/16/2014
10 nhà khoa học trẻ giành suất nghiên cứu tại Nhật Bản 12/16/2014
200 gian hàng tham gia triển lãm Vietconstech 2014 12/16/2014
Giảng viên đại học sẽ dành 1/3 thời gian để nghiên cứu khoa học 12/16/2014
Hội thảo nâng cao năng lực thực thi chương trình phát triển điện hạt nhân tại Việt Nam 12/16/2014
Hội thảo Việt - Nhật lần thứ ba về Nghiên cứu, phát triển nguồn nhân lực công nghệ hạt nhân 12/16/2014
Ký kết hợp tác nghiên cứu, chuyển giao và phát triển công nghệ điều trị ung giữa Đại học Y Hà Nội và Tập đoàn Grandsoul Nara 12/16/2014
Khoa học và công nghệ là then chốt trong tái cơ cấu nông nghiệp 12/16/2014













Trang chủ   |    CN/TB chào bán   |    CN/TB tìm mua   |    Tin tức   |    Giới thiệu   |    Liên hệ Register   |    Login   
Số lượt truy cập: 124036064 Bản quyền thuộc Cục Thông tin Khoa học và Công nghệ Quốc gia.
Địa chỉ trụ sở chính: 24 Lý Thường Kiệt - Quận Hoàn Kiếm - Hà Nội.
Tel: (84-04) 38249874 - 39342945 | Fax: (08-04) 38249874 | Email: techmart@vista.gov.vn