Tin tức
Hotline: (84 04) 382 49874      
Hỗ trợ online: Chát với hỗ trợ Online - Yahoo Chát với hỗ trợ Online - Skype  Liên Hệ  Tiếng Anh
http://techmartvietnam.vn/Portals/_default/Skins/NVPortal/Images/xuctien.jpg
http://techmartvietnam.vn/Portals/_default/Skins/NVPortal/Images/xuctien.jpg

Robot tí hon giúp hàn gắn tế bào tổn thương 3:14 PM,11/12/2020

Nghiên cứu được đăng trên tạp chí Science Advances cho thấy, những robot siêu nhỏ có thể mở ra những cách thức phức tạp hơn nhằm phát triển mạng lưới tế bào thần kinh trong phòng thí nghiệm.

Thậm chí có thể nuôi hy vọng về cách sửa chữa các tế bào thần kinh bị đứt lìa ở người. Hai kỹ sư Eunhee Kim và Hoongsoo Choi thuộc Viện Khoa học và Công nghệ Daegu Gyeongbuk ở Hàn Quốc là người đứng sau nghiên cứu này.

-          Robot có chức năng như một miếng ghép Lego

Kỹ sư Eunhee Kim và Hoongsoo Choi cùng các đồng sự lần đầu tiên chế tạo ra những con robot hình chữ nhật dài 300 micromet. Chúng có các rãnh ngang mảnh mai, bằng chiều rộng của các tua tế bào thần kinh có thể trao đổi thông tin với các tế bào khác nằm ở phía trên.

Không phải làm từ nhựa, những robot nhỏ này được đặt trong khoảng trống đứt gãy và có các rãnh nhỏ hướng các tế bào não, hoặc tế bào thần kinh phát triển trên không gian trống và liên kết với các tế bào thần kinh ở phía bên kia để chúng có thể tổng hợp các thông điệp với nhau.

Đây không phải là loại mạng thần kinh giống như mạng Neuralink của tỷ phú Elon Musk. Mặc dù Neuralink có các chức năng y tế cũng có thể sửa chữa các đường truyền thần kinh, nhưng tầm nhìn cuối cùng của Elon Musk về mạng lưới này là kết nối các đường suy nghĩ giữa các cá nhân khác nhau. Hãy coi các con robot của ông Choi như những đầu nối giúp liên kết các nơron bị chia cắt trước đó. Các nơron được kết nối với nhau và từ đó mạng lưới thần kinh được kích hoạt lại.

“Tôi nghĩ một khi các tế bào thần kinh trên các robot siêu nhỏ này kết nối với các tế bào thần kinh xung quanh, việc thay đổi vị trí của chúng có thể khó khăn. Tuy nhiên, chúng ta có thể tạo mạng lưới thần kinh theo ý muốn trước khi các tế bào thần kinh trên các robot nhỏ kết nối với các tế bào thần kinh xung quanh” - ông Choi cho biết.

Hãy tưởng tượng các tế bào thần kinh ở 2 bên của khoảng trống não như đôi cánh của một phi thuyền và cấu trúc các robot siêu nhỏ sẽ kết nối giữa chúng. Ông Choi và đồng sự đã tiến hành các thí nghiệm, trong đó họ phát hiện ra rằng tế bào thần kinh mở rộng một cách ngẫu nhiên mà không được chỉ dẫn.

Thậm chí các robot có bề mặt nhẵn cũng không có kết quả trong việc kết nối. Đó là bởi vì ngay cả các tế bào tư duy của cơ thể cũng không biết phải làm gì nếu không được yêu cầu. Giống như nếu bạn mất đi sách hướng dẫn và cố gắng tự tìm cấu trúc của phi thuyền này, mọi thứ sẽ rối loạn cho tới khi bạn tìm thấy sách hướng dẫn.

Chính các rãnh trên robot đã hoạt động như bản chỉ dẫn cho các nơron biết cần phải đi đâu để khớp với các tế bào phía bên kia. Vì nhóm của ông Choi tạo ra công nghệ này trong ống nghiệm bên ngoài cơ thể, sau này họ sẽ phải chứng minh nó có thể hoạt động bên trong một bộ não sống.

Các tế bào thần kinh của con người cũng sẽ phải được thử nghiệm vì các thí nghiệm ban đầu mới sử dụng tế bào thần kinh của chuột.

-          Hy vọng chữa lành tổn thương của tế bào thần kinh

Khi trả lời câu hỏi về hy vọng sau khi những robot tí hon trên hoạt động trong một tế bào sống và cuối cùng là trong não người, ông Choi nói: “Đối với động vật nhỏ, chúng tôi đang nghiên cứu các loại robot siêu nhỏ khác nhau để phân phát thuốc hoặc tế bào. Đối với thử nghiệm trên người, tôi không chắc nó sẽ mất bao lâu. Nó gần như tùy thuộc vào kinh phí và các quy định. Tôi hy vọng nhóm của mình có thể tiếp tục nghiên cứu này với đủ kinh phí”.

Trong khi các robot nhỏ xíu của ông Choi chưa được thử nghiệm thực tế trong một bộ não thực sự (của người hay động vật), nhưng chúng có tiềm năng sửa chữa các kết nối bị đứt gãy khiến não bị tổn thương do chấn thương hoặc các bệnh như Parkinson hay Alzheimer trong tương lai.

Ông Choi và đồng sự sẽ tiếp tục nâng cấp công nghệ của mình. Bởi vì khi các robot được từ tính hóa, sự hình thành của chúng có thể được điều khiển bởi một từ trường ở một góc phù hợp để các nơron lan truyền và tạo ra một sự kết nối. Chúng cũng sẽ tiếp tục được cập nhật để tăng hiệu quả.

Nguồn: Theo GDĐT, ngày 11/11/2020.

Send Print  Back
The news brought
Nhiệt độ trung bình cơ thể người đang giảm xuống 11/12/2020
Cảm biến đeo trên mặt giúp bệnh nhân ALS giao tiếp 11/12/2020
Trung tâm đột quỵ hàng đầu Việt Nam đi vào hoạt động 11/10/2020
Australia hỗ trợ Việt Nam và một số nước tiếp cận vaccine Covid-19 11/10/2020
Phổi nhân tạo – đột phá trong nghiên cứu về virus SARS-CoV-2 11/6/2020
AI phát hiện người nhiễm Covid-19 không có triệu chứng qua tiếng ho 11/6/2020
Nội soi bằng robot thông minh 10/30/2020
Phức hệ nano FGC: Từ bài thuốc cổ truyền đến chất dẫn điều trị ung thư 10/30/2020
Vaccine Covid-19 của Oxford tạo ra phản ứng miễn dịch mạnh ở người cao tuổi 10/27/2020
Ứng dụng trí tuệ nhân tạo, nâng cao hiệu quả điều trị bệnh lý về tiêu hóa 10/27/2020
Sản xuất vaccine từ hạt giả virus gây bệnh lở mồm long móng 10/27/2020
Tái tạo cách thức lây nhiễm của virus HIV trong ống nghiệm 10/26/2020
Nhiều ca bệnh Covid-19 xuất hiện nguy cơ mất thính giác vĩnh viễn 10/19/2020
Xét nghiệm mới dựa trên công nghệ CRISPR phát hiện Covid-19 chỉ trong 5 phút 10/13/2020
Công nghệ nano mới đem lại hy vọng điều trị cá nhân hóa ung thư 10/12/2020













Trang chủ   |    CN/TB chào bán   |    CN/TB tìm mua   |    Tin tức   |    Giới thiệu   |    Liên hệ Register   |    Login   
Số lượt truy cập: 119952908 Bản quyền thuộc Cục Thông tin Khoa học và Công nghệ Quốc gia.
Địa chỉ trụ sở chính: 24 Lý Thường Kiệt - Quận Hoàn Kiếm - Hà Nội.
Tel: (84-04) 38249874 - 39342945 | Fax: (08-04) 38249874 | Email: techmart@vista.gov.vn